skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tucker, Colin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Dryland organisms exhibit varied responses to changes in precipitation, including event size, frequency, and soil moisture duration, influencing carbon uptake and reserve management strategies. This principle, central to the pulse‐reserve paradigm, has not been thoroughly evaluated in biological soil crusts (biocrusts), essential primary producers on dryland surfaces. We conducted two experiments to investigate carbon uptake in biocrusts under different precipitation regimes. In the first, we applied a gradient of watering amounts to biocrusts dominated by moss or cyanobacteria, hypothesising distinct pulse‐response strategies. The second experiment extended watering treatments over three months, varying pulse size and frequency. Our results revealed distinct carbon uptake patterns: moss crusts exhibited increased CO2uptake with larger, less frequent watering events, whereas cyanobacteria crusts maintained similar carbon uptake across all event sizes. These findings suggest divergent pulse‐response strategies across biocrust types, with implications for modelling dryland carbon dynamics and informing land management under changing precipitation regimes. 
    more » « less
  2. Sphagnum-dominated peatlands store more carbon than all of Earth’s forests, playing a large role in the balance of carbon dioxide. However, these carbon sinks face an uncertain future as the changing climate is likely to cause water stress, potentially reducing Sphagnum productivity and transitioning peatlands to carbon sources. A mesocosm experiment was performed on thirty-two peat cores collected from two peatland landforms: elevated mounds (hummocks) and lower, flat areas of the peatland (hollows). Both rainfall treatments and water tables were manipulated, and CO2 fluxes were measured. Other studies have observed peat subsiding and tracking the water table downward when experiencing water stress, thought to be a self-preservation technique termed ‘Mire-breathing’. However, we found that hummocks tended to compress inwards, rather than subsiding towards the lowered water table as significantly as hollows. Lower peat height was linearly associated with reduced gross primary production (GPP) in response to lowered water tables, indicating that peat subsidence did not significantly enhance the resistance of GPP to drought. Conversely, Sphagnum peat compression was found to stabilize GPP, indicating that this mechanism of resilience to drought may transmit across the landscape depending on which Sphagnum landform types are dominant. This study draws direct connections between Sphagnum traits and peatland hydrology and carbon cycling. 
    more » « less
  3. Summary Drainage‐induced encroachment by trees may have major effects on the carbon balance of northern peatlands, and responses of microbial communities are likely to play a central mechanistic role.We profiled the soil fungal community and estimated its genetic potential for the decay of lignin and phenolics (class II peroxidase potential) along peatland drainage gradients stretching from interior locations (undrained, open) to ditched locations (drained, forested).Mycorrhizal fungi dominated the community across the gradients. When moving towards ditches, the dominant type of mycorrhizal association abruptly shifted from ericoid mycorrhiza to ectomycorrhiza atc.120 m from the ditches. This distance corresponded with increased peat loss, from which more than half may be attributed to oxidation. The ectomycorrhizal genusCortinariusdominated at the drained end of the gradients and its relatively higher genetic potential to produce class II peroxidases (together withMycena) was positively associated with peat humification and negatively with carbon‐to‐nitrogen ratio.Our study is consistent with a plant–soil feedback mechanism, driven by a shift in the mycorrhizal type of vegetation, that potentially mediates changes in aerobic decomposition during postdrainage succession. Such feedback may have long‐term legacy effects upon postdrainage restoration efforts and implication for tree encroachment onto carbon‐rich soils globally. 
    more » « less
  4. Abstract Northern peatlands play an important role in the global C cycle due to their large C stocks and high potential methane (CH4) emissions. The CH4and CO2cycles of these systems are closely linked to hydrology, with water table level regulating the balance of oxic and anoxic conditions and the water content ofSphagnummosses that dominate primary production. Previous work has demonstrated that hyperspectral indices well‐suited to the detection of altered hydrology inSphagnumpeatlands are also highly correlated with GPP. However, little work has been done to extend these findings to CH4effluxes. In this study, we evaluate the utility of four hyperspectral indices, two reflecting vegetation photosynthetic function (chlorophyll index (CI); normalized difference vegetation index) and two reflecting water content (wetness index (WI); floating water band index), for detecting effects of altered water table, precipitation, and vegetation community on CH4and CO2exchange in two peatland mesocosm studies. We found that CI is a good predictor of net CO2exchange, and that it captured both drought and vegetation effects consistently across a broad range of vegetation treatments. Further, we demonstrate for the first time that WI combined with CI explained a significant percentage of CH4efflux (R2 = 0.32–0.57). Our results indicate that CI and WI together may be effective tools for detecting effects of altered hydrology and vegetation on northernSphagnum‐peatland CH4and CO2emissions, with implications for detecting and modeling changes in emissions of greenhouse gases at scales ranging from the ecosystem to the Earth system. 
    more » « less
  5. Abstract A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full‐factorial 1‐m3mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land‐use‐induced changes in peatland hydrology can increase the vulnerability of peatland C stores. 
    more » « less